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Abstract

For greenhouse growers and farmers in general, accurate
forecasts of plant development and productivity are critical.
Growers can enhance environmental control, match supply with
demand, and minimise costs by developing models that
accurately forecast growth and output. Powerful new analytical
tools may be gained from recent advances in Machine Learning
and in particular, Deep Learning (DL). Tomato yield forecasting
and Ficus benjamina stem development will be predicted using
ML and DL approaches in a controlled greenhouse setting in the
proposed project. In the prediction formulations, we use a novel
deep recurrent neural network (RNN) based on the LSTM
neuron model. The RNN architecture dels the intended
growth parameters using the previous yield, growth, and stem
diameter measurements, as well as microclimate circumstances.
Support vector regression and random forest regression are
compared in a researchutilising the mean square error criteria in
order to assess the effectiveness of the various approaches.
Results from the EU Interreg SMARTGREEN project (2017-
2021) in two greenhouses in Belgium and the UK have shown
great promise, according to the statistics given.
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INTRODUCTION

Plant development, like many other bio-systems, is a
highly complex and dynamic system that is
intertwined with the environment. Growing and
yielding models are thus an important scientific
problem. There are a lot of ways to model a problem
(including, scale of interest, level of description,
integration of  environmental  stress, etc.).
"Knowledge-driven" or "data-driven" modelling are
two primary techniques, according to (Todorovski
and Dzeroski, 2006; Atanasova et al., 2008). The
method based on existing domain knowledge is
referred to as a "knowledge driven" one. Data-driven
modelling, on the other hand, does not need the use
of domain expertise in order to create a model. There
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are a variety of data-driven models (DDMs) that
incorporate machine learning approaches such as
neural networks, support vector machines, and
generalised linear models (Pouteau et al., 2012).
Methods like this offer a wide range of desired
features, such as the capacity to approximate
nonlinear functions, the ability to forecast accurately
and the ability to handle a wide range of inputs
(Buhmann, 2003). Regression analysis, linear
polarizations, wavelet-based filtering and vegetation
indices (NDVI) are the most often used approaches
for assessing agricultural data, according to Singh
and Liakos et al. (2016) and Liakos et al. (2018)
respectively. A new approach, deep learning (DL),
has lately gained traction in addition to the
aforementioned methods (Goodfellow et al., 2016).
According to Wikipedia, DL is part of the machine
learning area and is quite similar to an ANN. Deep
learning is about "deeper" neural networks that give a
hierarchical representation of the data through
different operations. This provides for more learning
capabilities, resulting in greater performance and
accuracy. As a result of feature learning, raw data
may be automatically analysed for characteristics that
can be used to build higher-level hierarchical features
(Goodfellow et al., 2016). Because of the complexity
of the linked models, DL is especially good at
solving increasingly complicated issues (Pan and
Yang, 2010). It is possible to improve classification
and regression accuracy with the use of DL's
sophisticated models, but only if big data sets are
available to describe the issue. Comparative studies
of ANN, SVR, M5-prime, KNN and Multiple Linear
Regression for agricultural yield prediction were
reported by Gonzalez-Sanchez and colleagues
(2019). There were four accuracy measures that were
employed in their study: root mean square error
(RMS), root relative square error (RRSE), normalised
mean absolute error (MAE), and correlation factor.
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Among the crop yield models tested, M5-Prime
exhibited the fewest mistakes. MS5-Prime, SVR,
ANN, and MLR were found to be the top and worst
algorithms rated according to RMSE, RRSE, R, and
MAE in that research. Nair and Yang-Won (2016)
used four machine learning algorithms to predict corn
yield in Iowa State, including SVM, Random Forest
(RF), Extremely Randomized Trees (ERT), and Deep
Learning (DL). DL was shown to be more stable,
addressing the issue of overfitting, based on
comparisons of validation data. During the vegetative
development stage, stem diameter is one of the most
significant criteria to describe plant growth. Stem
diameter variation has been utilised extensively to
develop proxies for plant water status, which has
been employed in a broad variety of species to
optimise plant-based irrigation scheduling. An
indication of changes in plant water content may be
found in plant stem diameter variation (SDV), which
is a measure of plant stem shrinkage and recovery
over the course of the day and night. Crop plants
depend on photosynthesis and the transport of photo-
assimilates from the site of synthesis to sink organs
for glucose during active vegetative growth and
development (Yu et al., 2015). In a large body of
literature, the foundations of stem diameter variation
have been thoroughly examined and recorded
(Vandegehuchet et al., 2014). Soil dissolved volume
(SDV), which is intimately linked with agricultural
plant responses to environmental changes, has been
established (Kanai et al., 2008). Crop plants under
abiotic stress during the vegetative development
stage have a significant impact on stem diameter. In
order to forecast the reaction of SDV to
environmental changes and plant development under
diverse situations, stem diameter growth models must
be developed. SDV models for assessing the
influence of the environment on crop development
need to be critically reviewed and improved,
according to several research (Hinckley and
Bruckerhoff, 2011). Accurate inter-annual variance in
yearly growth of the balsam fir (Abies birnamea L)
has been reliably predicted using SDV daily models
(Duchesene and Houle, 2011). By including daily
data into growth-climate models, researchers may
better forecast the possible growth response to
climate by detecting specific climatic events that
would otherwise go unnoticed by a dendroclimatic
method (Duchesene and Houle, 2011). However,
models that use environmental factors to predict SDV
and plant development are still in their infancy. Few
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models have been investigated for tomato crop
growth in greenhouse environment as a dynamic and
complicated system. As far as dynamic growth
models are concerned, Jones et al. (Jones, 1999) and
Heuvelink (1996) use TOMGRO and TOMSIM
(Heuvelink, 1996). Models of crop development and
production are based on physiological processes, and
they are influenced by a variety of climatic and
physiological variables. As a result of their
complexity, limited practical use, difficulties in
determining starting parameter values and the need of
calibration and validation in each new environment,
growers have been restricted in their acceptance.
Based on the weight of gathered fruits, the
Tompousse model was created by Abreu et al
(2000). Environmental characteristics in a heated
greenhouse in southern France were examined to
construct the model. This model assumed a linear
connection between the pace of blooming and the
rate of fruit development. When tested in Portugal in
unheated plastic  greenhouses, the model's
performance was low. Using a graphical modelling
programme, Adams (Adams, 2002) came up with
another tomato yield model (Adams, 2002) Modeling
weekly variations in greenhouse tomato productivity
in terms of fruit size and harvest rate was the primary
goal. Leaf truss growth and flower output were
estimated using hourly climatic data. In general,
seasonal differences in solar radiation and air
temperature have a significant impact on crop yields.
Many tools exist to assist farmers in making choices
(Qaddoum et al., 2013), according to (Qaddoum,
2013). It's possible to anticipate yield rates, provide
climate control suggestions, and time agricultural
production to match market needs using these. An
environmental (CO2, humidity, radiation, outside
temperature, inside temperature) as well as actual
yield and stem diameter variation measurement-
trained deep learning model is proposed in this paper
and has the ability to accurately predict stem
diameter problems in ficus trees and tomato yield
problems in tomatoes. Listed below are the sections
of this document. Described in Section 2 are the
suggested technique and datasets that will be used.
Section 3 displays the outcomes, and Section 4
concludes and plans for the future..

MATERIALS AND METHODS

Conventional Machine Learning

50



Manjusri Harshini, et al, International Journal of Advances in Agricultural Science & Technology,
Vol.9 Issue 8, Aug 2022, pg.49-54

Machine learning (ML) algorithms have the ability to
solve complex, non-linear problems on their own,
employing data from a variety of different sources.
Artificial intelligence can make better decisions and
take more informed actions in real-world situations
with little or no human involvement. Data-driven
decision making may be applied to a broad range of
industries, including agriculture, thanks to this strong
and versatile platform. Accurate predictions of plant
growth, yield, and output have been made using
various machine learning algorithms in recent years.
For example, artificial neural networks, SVR, M5-
prime regression trees, Random Forests, and K-
Nearest Neighbors are the most effective algorithms
(Chlingaryan et al., 2018). SVR and RF models are
utilised as baseline models in this work to forecast
plant production and growth.

Support vector regression (SVR)

Vapnik's Generalized Portrait technique was
generalised nonlinearly to produce Support vector
regression (SVR) (Cortes and Vapnik, 1995). It uses
a kernel function to transform the input data into a
higher-dimensional space and a hyperplane to
segregate various types of data. The regularisation
parameter c¢ regulates the trade-off between margin
and mistakes. Radial basis kernel functions (SVRrbf)
use K(xi, xj) = exp (yxi — xj—2) as the kernel
function. As you can see, the radial basis function
requires that y be a constant.

Random forest (RF)

Ensemble learning methods like RF date back to Ho's
work from (Ho, 1998). RF utilises decision trees as
the ensemble's primary base learner. It is argued in
ensemble learning that it is not possible to accurately
forecast the intended value of test data by using just
one predictor. The reason for this is because a single
predictor cannot tell the difference between random
noise and actual patterns based on sample data. A
bootstrap sample of the training data is selected for
each separate regression tree. Because of this, the
regression tree grows until it reaches its maximum
size. A weighted average of the predictions from each
regression tree is used to arrive at final prediction
values (Breiman 2001).

Deep learning (DL)
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Traditional machine learning (ML) models are
augmented with "depth" (complexity) and other
functions that generate data representations
hierarchically, via numerous abstraction layers. In
order to get the most out of DL, it's important to use
feature learning, which involves automatically
extracting features from raw data and then composing
higher-level features from the constituent parts. Due
to the use of increasingly complicated models and
huge parallelization, DL is able to tackle difficult
problems quickly and efficiently. If the datasets
characterising the issue are big enough, the
sophisticated models used in DL may improve
classification accuracy or minimise regression error.
Convolutions, pooling layers, fully connected layers,
gates, memory cells, activation functions,
encoding/decoding techniques, depending on the
network  architecture  employed, such as
Convolutional Neural Networks, Recurrent Neural
Networks, Unsupervised Networks (Kamilaris et al.,
2018).

Long short-term memories (LSTM)

Initial development of the LSTM model was aimed at
modelling long-term dependencies and establishing
the best time delay for time series issues (Hochreiter
and Schmidhuber, 1997). One input layer, one
recurrent hidden layer, and one output layer make up
an LSTM network. There are two types of adaptive,
multiplicative gating units in the hidden layer: one
controls information flow and contains memory cells
with self-connections to save the temporal state.
Constant Error Carousel (CEC) is the memory cell's
primary recurrently self-connected linear unit, and
the cell state is represented by the CEC activation.
Learning to open and shut the multiplicative gates
takes place over time. The vanishing gradient issue in
LSTM can be overcome by keeping the network error
constant. When learning lengthy time series, a forget
gate is added to the memory cell, which prevents the
gradient from expanding. An explanation of the
workings of LSTM may be summarised in this way:
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M;=5; ° 0

Input, forget, and output gates are marked by it, it,
and yt, while the hidden state and cell state of the
memory cell are represented by mt and
ctrespectively.

Microclimatic measurements

DL and ML models were applied to data from four
cultivation tables in a 90 m2 greenhouse
compartment at the Ornamental Plant Research
Centre (PCS) in Destelbergen, Belgium, where we
studied Ficus plants. Approximately 15 pots per m2
were filled with 3 cuttings each. Window apertures, a
thermal screen, an air heating system, assimilation
light, and a CO2 addition system were all used to
regulate the greenhouse's environment. A time and
radiation sum-controlled automated flood irrigation
system was used to water the plants. The
microclimate and irrigation controls were set at the
same level as those used in commercial greenhouses.
The greenhouse's microclimate was monitored
constantly. A LI-190 Quantum Sensor (LI-COR,
Lincoln, Nebraska, USA) and a carbon dioxide probe
(Vaisala. CARBOCAP GMP343, Vantaa, Finland)
were used to detect PAR and CO2 concentration,
respectively. A temperature and relative humidity
probe (Campbell Scientific CS215, Logan, UT, USA)
was put in a vented radiation shield to detect
temperature and relative humidity. A linear variable
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displacement transducer (LVDT, Solartron, Bognor
Regis, UK) sensor was used to continually measure
the stem diameter of these plants. When the present
stem diameter was compared to the diameter
measured an hour earlier, the hourly fluctuation rate
(mm d 1) was determined as the difference. Data
from a UK Greenhouse farm was used to train the DL
and ML models in the second experiment. This
included both environmental (CO2, humidity,
radiation, outside temperature, interior temperature)
as well as yield real measurements. The yield was
measured monthly, while environmental data were
recorded hourly. Because of the irregularity of the
weekly readings, we used data augmentation to
provide daily data measurements. We also averaged
the hourly environmental data to get daily
representations that were comparable. These datasets
were then divided into training, testing and validation
sets in each studies. In all, 60 percent of the collected
data was allocated to the training set, 15 percent to
the validation set, and 25 percent to the test set.

Prediction evaluation

For assessing the accuracy of these forecasting
models, researchers employed the MAE, RMSE, and
MSE metrics (mean squared errors). In the following
equations, the formulas for wvarious assessment
measures are shown:

_1lvn (Az—F.r)z
mse =1y, (2

1 [ Ag—Fe|
MAE = =3, =X
m 2

e - (152, (552

where A,is the actual value and F;is the predicted value.

RESULTS AND DISCUSSION

Plant yield and growth in greenhouse conditions may
be predicted using DL (LSTM), SVR, and RFR
prediction models that we've created and validated.
These models have been used to forecast ficus
growth using the SDV indicator, as well as tomato
production predictions. The parameters of each
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model were determined using the grid search
approach. The SVR model design relied heavily on
the gamma and C parameters. The number of trees
and the maximum depth of the tree were critical
considerations in the creation of the RF model. For
the DL LSTM model, it was critical to consider the
number and size of hidden layers. There were three
stages in the strategy that was put into action: * Data
pre-processing and data cleansing. ¢ Training,
validation, and test datasets may be divided into three
separate datasets. * Design and implementation of
DL/LSTM, SVR, and RF models for one-step
forward prediction. In both studies, the DL/LSTM
model beats the SVR and RF models, demonstrating
its superiority. MSE, RMSE, and MAE are shown in
Table 1 for each of the three (trained) models on the
test datasets in both studies. Table 1 compares the
DL/LSTM model's performance to those of the SVR
and RF models in predicting plant production and
growth.

Datasets Tomato Yield Ficus Growth(SDV)

Models | SVR | RF |LSTM | SVR | RF | LSTM

MSE 0.015 | 0.040 | 0.002 | 0.006 | 0.006 | 0.001

RMSE | 0.125 | 0.200 | 0.047 | 0.073 | 0.062 | 0.042

MAE 0.087 | 0.192 | 0.03 | 0.070 | 0.063 | 0.030

Figure 1 shows how prediction models perform (RF,
SVR and LSTM). In terms of predicting Ficus growth
(SVD), the LSTM model beat both RF and SVR. RF
and SVR models were unable to generalise as well as
the LSTM model, as shown in Figure 2, which
exhibited a greater capacity to capture the temporal
aspect of the presented data.

CONCLUSIONS

Researchers in this study used an artificial neural
network (ANN) to predict the SDV of Ficus and
tomato yields, with good accuracy in both cases. In
terms of MSE, RMSE, and MAE error criterion,
experimental findings showed that the DL approach
(using an LSTM model) outperformed other classic
ML techniques like SVR and RF. That's why it's
important to us that we apply deep learning methods
to anticipate plant growth and productivity in a
greenhouse setting. Next steps include: a) expanding
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the DL approach to conduct multi-step (weekly, or
multiple-week) prediction of growth and yield in
various greenhouses in the UK and Europe; and b)
increasing the quantity of gathered data that are
utilised for training the suggested DL methods.

Figure 1. Testing results and performance
comparison of Ficus growth (SVD) predictions.
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