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Abstract 

For greenhouse growers and farmers in general, accurate 

forecasts of plant development and productivity are critical. 

Growers can enhance environmental control, match supply with 

demand, and minimise costs by developing models that 

accurately forecast growth and output. Powerful new analytical 

tools may be gained from recent advances in Machine Learning 

and in particular, Deep Learning (DL). Tomato yield forecasting 

and Ficus benjamina stem development will be predicted using 

ML and DL approaches in a controlled greenhouse setting in the 

proposed project. In the prediction formulations, we use a novel 

deep recurrent neural network (RNN) based on the LSTM 

neuron model. The RNN architecture models the intended 

growth parameters using the previous yield, growth, and stem 

diameter measurements, as well as microclimate circumstances. 

Support vector regression and random forest regression are 

compared in a researchutilising the mean square error criteria in 

order to assess the effectiveness of the various approaches. 

Results from the EU Interreg SMARTGREEN project (2017-

2021) in two greenhouses in Belgium and the UK have shown 

great promise, according to the statistics given. 
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INTRODUCTION 

Plant development, like many other bio-systems, is a 

highly complex and dynamic system that is 

intertwined with the environment. Growing and 

yielding models are thus an important scientific 

problem. There are a lot of ways to model a problem 

(including, scale of interest, level of description, 

integration of environmental stress, etc.). 

"Knowledge-driven" or "data-driven" modelling are 

two primary techniques, according to (Todorovski 

and Dzeroski, 2006; Atanasova et al., 2008). The 

method based on existing domain knowledge is 

referred to as a "knowledge driven" one. Data-driven 

modelling, on the other hand, does not need the use 

of domain expertise in order to create a model. There 

are a variety of data-driven models (DDMs) that 

incorporate machine learning approaches such as 

neural networks, support vector machines, and 

generalised linear models (Pouteau et al., 2012). 

Methods like this offer a wide range of desired 

features, such as the capacity to approximate 

nonlinear functions, the ability to forecast accurately 

and the ability to handle a wide range of inputs 

(Buhmann, 2003). Regression analysis, linear 

polarizations, wavelet-based filtering and vegetation 

indices (NDVI) are the most often used approaches 

for assessing agricultural data, according to Singh 

and Liakos et al. (2016) and Liakos et al. (2018) 

respectively. A new approach, deep learning (DL), 

has lately gained traction in addition to the 

aforementioned methods (Goodfellow et al., 2016). 

According to Wikipedia, DL is part of the machine 

learning area and is quite similar to an ANN. Deep 

learning is about "deeper" neural networks that give a 

hierarchical representation of the data through 

different operations. This provides for more learning 

capabilities, resulting in greater performance and 

accuracy. As a result of feature learning, raw data 

may be automatically analysed for characteristics that 

can be used to build higher-level hierarchical features 

(Goodfellow et al., 2016). Because of the complexity 

of the linked models, DL is especially good at 

solving increasingly complicated issues (Pan and 

Yang, 2010). It is possible to improve classification 

and regression accuracy with the use of DL's 

sophisticated models, but only if big data sets are 

available to describe the issue. Comparative studies 

of ANN, SVR, M5-prime, KNN and Multiple Linear 

Regression for agricultural yield prediction were 

reported by Gonzalez-Sanchez and colleagues 

(2019). There were four accuracy measures that were 

employed in their study: root mean square error 

(RMS), root relative square error (RRSE), normalised 

mean absolute error (MAE), and correlation factor. 
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Among the crop yield models tested, M5-Prime 

exhibited the fewest mistakes. M5-Prime, SVR, 

ANN, and MLR were found to be the top and worst 

algorithms rated according to RMSE, RRSE, R, and 

MAE in that research. Nair and Yang-Won (2016) 

used four machine learning algorithms to predict corn 

yield in Iowa State, including SVM, Random Forest 

(RF), Extremely Randomized Trees (ERT), and Deep 

Learning (DL). DL was shown to be more stable, 

addressing the issue of overfitting, based on 

comparisons of validation data. During the vegetative 

development stage, stem diameter is one of the most 

significant criteria to describe plant growth. Stem 

diameter variation has been utilised extensively to 

develop proxies for plant water status, which has 

been employed in a broad variety of species to 

optimise plant-based irrigation scheduling. An 

indication of changes in plant water content may be 

found in plant stem diameter variation (SDV), which 

is a measure of plant stem shrinkage and recovery 

over the course of the day and night. Crop plants 

depend on photosynthesis and the transport of photo-

assimilates from the site of synthesis to sink organs 

for glucose during active vegetative growth and 

development (Yu et al., 2015). In a large body of 

literature, the foundations of stem diameter variation 

have been thoroughly examined and recorded 

(Vandegehuchet et al., 2014). Soil dissolved volume 

(SDV), which is intimately linked with agricultural 

plant responses to environmental changes, has been 

established (Kanai et al., 2008). Crop plants under 

abiotic stress during the vegetative development 

stage have a significant impact on stem diameter. In 

order to forecast the reaction of SDV to 

environmental changes and plant development under 

diverse situations, stem diameter growth models must 

be developed. SDV models for assessing the 

influence of the environment on crop development 

need to be critically reviewed and improved, 

according to several research (Hinckley and 

Bruckerhoff, 2011). Accurate inter-annual variance in 

yearly growth of the balsam fir (Abies birnamea L) 

has been reliably predicted using SDV daily models 

(Duchesene and Houle, 2011). By including daily 

data into growth-climate models, researchers may 

better forecast the possible growth response to 

climate by detecting specific climatic events that 

would otherwise go unnoticed by a dendroclimatic 

method (Duchesene and Houle, 2011). However, 

models that use environmental factors to predict SDV 

and plant development are still in their infancy. Few 

models have been investigated for tomato crop 

growth in greenhouse environment as a dynamic and 

complicated system. As far as dynamic growth 

models are concerned, Jones et al. (Jones, 1999) and 

Heuvelink (1996) use TOMGRO and TOMSIM 

(Heuvelink, 1996). Models of crop development and 

production are based on physiological processes, and 

they are influenced by a variety of climatic and 

physiological variables. As a result of their 

complexity, limited practical use, difficulties in 

determining starting parameter values and the need of 

calibration and validation in each new environment, 

growers have been restricted in their acceptance. 

Based on the weight of gathered fruits, the 

Tompousse model was created by Abreu et al. 

(2000). Environmental characteristics in a heated 

greenhouse in southern France were examined to 

construct the model. This model assumed a linear 

connection between the pace of blooming and the 

rate of fruit development. When tested in Portugal in 

unheated plastic greenhouses, the model's 

performance was low. Using a graphical modelling 

programme, Adams (Adams, 2002) came up with 

another tomato yield model (Adams, 2002) Modeling 

weekly variations in greenhouse tomato productivity 

in terms of fruit size and harvest rate was the primary 

goal. Leaf truss growth and flower output were 

estimated using hourly climatic data. In general, 

seasonal differences in solar radiation and air 

temperature have a significant impact on crop yields. 

Many tools exist to assist farmers in making choices 

(Qaddoum et al., 2013), according to (Qaddoum, 

2013). It's possible to anticipate yield rates, provide 

climate control suggestions, and time agricultural 

production to match market needs using these. An 

environmental (CO2, humidity, radiation, outside 

temperature, inside temperature) as well as actual 

yield and stem diameter variation measurement-

trained deep learning model is proposed in this paper 

and has the ability to accurately predict stem 

diameter problems in ficus trees and tomato yield 

problems in tomatoes. Listed below are the sections 

of this document. Described in Section 2 are the 

suggested technique and datasets that will be used. 

Section 3 displays the outcomes, and Section 4 

concludes and plans for the future.. 

MATERIALS AND METHODS 

Conventional Machine Learning 
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Machine learning (ML) algorithms have the ability to 

solve complex, non-linear problems on their own, 

employing data from a variety of different sources. 

Artificial intelligence can make better decisions and 

take more informed actions in real-world situations 

with little or no human involvement. Data-driven 

decision making may be applied to a broad range of 

industries, including agriculture, thanks to this strong 

and versatile platform. Accurate predictions of plant 

growth, yield, and output have been made using 

various machine learning algorithms in recent years. 

For example, artificial neural networks, SVR, M5-

prime regression trees, Random Forests, and K-

Nearest Neighbors are the most effective algorithms 

(Chlingaryan et al., 2018). SVR and RF models are 

utilised as baseline models in this work to forecast 

plant production and growth. 

Support vector regression (SVR) 

Vapnik's Generalized Portrait technique was 

generalised nonlinearly to produce Support vector 

regression (SVR) (Cortes and Vapnik, 1995). It uses 

a kernel function to transform the input data into a 

higher-dimensional space and a hyperplane to 

segregate various types of data. The regularisation 

parameter c regulates the trade-off between margin 

and mistakes. Radial basis kernel functions (SVRrbf) 

use K(xi, xj) = exp (yxi – xj–2) as the kernel 

function. As you can see, the radial basis function 

requires that y be a constant. 

Random forest (RF) 

Ensemble learning methods like RF date back to Ho's 

work from (Ho, 1998). RF utilises decision trees as 

the ensemble's primary base learner. It is argued in 

ensemble learning that it is not possible to accurately 

forecast the intended value of test data by using just 

one predictor. The reason for this is because a single 

predictor cannot tell the difference between random 

noise and actual patterns based on sample data. A 

bootstrap sample of the training data is selected for 

each separate regression tree. Because of this, the 

regression tree grows until it reaches its maximum 

size. A weighted average of the predictions from each 

regression tree is used to arrive at final prediction 

values (Breiman 2001). 

Deep learning (DL) 

Traditional machine learning (ML) models are 

augmented with "depth" (complexity) and other 

functions that generate data representations 

hierarchically, via numerous abstraction layers. In 

order to get the most out of DL, it's important to use 

feature learning, which involves automatically 

extracting features from raw data and then composing 

higher-level features from the constituent parts. Due 

to the use of increasingly complicated models and 

huge parallelization, DL is able to tackle difficult 

problems quickly and efficiently. If the datasets 

characterising the issue are big enough, the 

sophisticated models used in DL may improve 

classification accuracy or minimise regression error. 

Convolutions, pooling layers, fully connected layers, 

gates, memory cells, activation functions, 

encoding/decoding techniques, depending on the 

network architecture employed, such as 

Convolutional Neural Networks, Recurrent Neural 

Networks, Unsupervised Networks (Kamilaris et al., 

2018). 

Long short-term memories (LSTM) 

Initial development of the LSTM model was aimed at 

modelling long-term dependencies and establishing 

the best time delay for time series issues (Hochreiter 

and Schmidhuber, 1997). One input layer, one 

recurrent hidden layer, and one output layer make up 

an LSTM network. There are two types of adaptive, 

multiplicative gating units in the hidden layer: one 

controls information flow and contains memory cells 

with self-connections to save the temporal state. 

Constant Error Carousel (CEC) is the memory cell's 

primary recurrently self-connected linear unit, and 

the cell state is represented by the CEC activation. 

Learning to open and shut the multiplicative gates 

takes place over time. The vanishing gradient issue in 

LSTM can be overcome by keeping the network error 

constant. When learning lengthy time series, a forget 

gate is added to the memory cell, which prevents the 

gradient from expanding. An explanation of the 

workings of LSTM may be summarised in this way: 
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Input, forget, and output gates are marked by it, it, 

and yt, while the hidden state and cell state of the 

memory cell are represented by mt and 

ctrespectively. 

Microclimatic measurements 

DL and ML models were applied to data from four 

cultivation tables in a 90 m2 greenhouse 

compartment at the Ornamental Plant Research 

Centre (PCS) in Destelbergen, Belgium, where we 

studied Ficus plants. Approximately 15 pots per m2 

were filled with 3 cuttings each. Window apertures, a 

thermal screen, an air heating system, assimilation 

light, and a CO2 addition system were all used to 

regulate the greenhouse's environment. A time and 

radiation sum-controlled automated flood irrigation 

system was used to water the plants. The 

microclimate and irrigation controls were set at the 

same level as those used in commercial greenhouses. 

The greenhouse's microclimate was monitored 

constantly. A LI-190 Quantum Sensor (LI-COR, 

Lincoln, Nebraska, USA) and a carbon dioxide probe 

(Vaisala CARBOCAP GMP343, Vantaa, Finland) 

were used to detect PAR and CO2 concentration, 

respectively. A temperature and relative humidity 

probe (Campbell Scientific CS215, Logan, UT, USA) 

was put in a vented radiation shield to detect 

temperature and relative humidity. A linear variable 

displacement transducer (LVDT, Solartron, Bognor 

Regis, UK) sensor was used to continually measure 

the stem diameter of these plants. When the present 

stem diameter was compared to the diameter 

measured an hour earlier, the hourly fluctuation rate 

(mm d 1) was determined as the difference. Data 

from a UK Greenhouse farm was used to train the DL 

and ML models in the second experiment. This 

included both environmental (CO2, humidity, 

radiation, outside temperature, interior temperature) 

as well as yield real measurements. The yield was 

measured monthly, while environmental data were 

recorded hourly. Because of the irregularity of the 

weekly readings, we used data augmentation to 

provide daily data measurements. We also averaged 

the hourly environmental data to get daily 

representations that were comparable. These datasets 

were then divided into training, testing and validation 

sets in each studies. In all, 60 percent of the collected 

data was allocated to the training set, 15 percent to 

the validation set, and 25 percent to the test set. 

Prediction evaluation 

For assessing the accuracy of these forecasting 

models, researchers employed the MAE, RMSE, and 

MSE metrics (mean squared errors). In the following 

equations, the formulas for various assessment 

measures are shown: 

 

 

RESULTS AND DISCUSSION 

 

Plant yield and growth in greenhouse conditions may 

be predicted using DL (LSTM), SVR, and RFR 

prediction models that we've created and validated. 

These models have been used to forecast ficus 

growth using the SDV indicator, as well as tomato 

production predictions. The parameters of each 
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model were determined using the grid search 

approach. The SVR model design relied heavily on 

the gamma and C parameters. The number of trees 

and the maximum depth of the tree were critical 

considerations in the creation of the RF model. For 

the DL LSTM model, it was critical to consider the 

number and size of hidden layers. There were three 

stages in the strategy that was put into action: • Data 

pre-processing and data cleansing. • Training, 

validation, and test datasets may be divided into three 

separate datasets. • Design and implementation of 

DL/LSTM, SVR, and RF models for one-step 

forward prediction. In both studies, the DL/LSTM 

model beats the SVR and RF models, demonstrating 

its superiority. MSE, RMSE, and MAE are shown in 

Table 1 for each of the three (trained) models on the 

test datasets in both studies. Table 1 compares the 

DL/LSTM model's performance to those of the SVR 

and RF models in predicting plant production and 

growth. 

 

Figure 1 shows how prediction models perform (RF, 

SVR and LSTM). In terms of predicting Ficus growth 

(SVD), the LSTM model beat both RF and SVR. RF 

and SVR models were unable to generalise as well as 

the LSTM model, as shown in Figure 2, which 

exhibited a greater capacity to capture the temporal 

aspect of the presented data. 

CONCLUSIONS 

Researchers in this study used an artificial neural 

network (ANN) to predict the SDV of Ficus and 

tomato yields, with good accuracy in both cases. In 

terms of MSE, RMSE, and MAE error criterion, 

experimental findings showed that the DL approach 

(using an LSTM model) outperformed other classic 

ML techniques like SVR and RF. That's why it's 

important to us that we apply deep learning methods 

to anticipate plant growth and productivity in a 

greenhouse setting. Next steps include: a) expanding 

the DL approach to conduct multi-step (weekly, or 

multiple-week) prediction of growth and yield in 

various greenhouses in the UK and Europe; and b) 

increasing the quantity of gathered data that are 

utilised for training the suggested DL methods.

 

 

Figure 1. Testing results and performance 

comparison of Ficus growth (SVD) predictions. 
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