Mrs. P. Vasanthi, et a/, International Journal of Advances in Agricultural Science & Technology,
Vol.8 Issue 8, Aug 2021, pg.210-213

ISSN:2348-1358
Impact Factor: 6.901
NAAS Rating: 3.77

Performance Analysis of Sequential and Parallel GRASP

Algorithms for the 0-1 Multidimensional Knapsack Problem

Mrs. P. Vasanthi
Assistant Professor, Department of CSE,
Malla Reddy College of Engineering for Women.,
Maisammaguda, Medchal., TS, India

Abstract:

The knapsack problem is a widely known problem
in combinatorial optimization and has been object
of many researches in the last decades. The
problem has a great number of variants and
obtaining an exact solution to any of these is not
easily accomplished, which motivates the search
for alternative techniques to solve the problem.
Among these alternatives, metaheuristics seem to
be suitable on the search for approximate solutions
for the problem. In this work we propose a
sequential and a parallel implementation for the
multidimensional knapsack problem using GRASP
metaheuristic. The obtained results show that
GRASP can lead to good quality results, even
optimal in some instances, and that CUDA may be
used to expand the neighbourhood search and as a
result may lead to improved quality results.

Keywords:

GRASP, 0-1 multidimensional knapsack problem,
CUDA.

Introduction

The knapsack problem (KP) is one of the most
known problems of combinatorial optimization.
Informally, given a set of items and a knapsack
with a known maximum capacity, we want to fill
the knapsack with the most valuable subset of the
items subject to the knapsack capacity. The 0-1
multidimensional knapsack problem (MKP) is a
generalization of KP which can have more than one
constraint and the items cannot be partitioned. In
this variation, the traditional approaches to solve
KP cannot be efficiently applied anymore and this
motivates the search for alternative approaches.
Formally, we can define MKP as, given a set of n
items with their respective values and m > 1

© 2021, IJAAST All Rights Reserved, https://ijaast.org/

constraints, deciding which items should be placed
inside the knapsack aiming to maximize its value
without extrapolate any of the constraints. We can
formulate the problem using the

Equation 1 [2]:

mu:{i:z vixEihi=1....n

=1

i

suhject to: E ri;T; = hi=1...m

i=1

where V = {vl, v2, ..., Vn} is an array containing
the item values, B = {bl, b2, ..., bm} is an array
with the constraint’s values and matrix R = {rl1,
., rlm, ..., rml, ..., rmn} stores how much each
constraint is used by each item. A solution to the
problem is a configuration of array X = {x1, x2, ...,
xn}, which satisfies every constraint of array B,
where each xi can assume the values 1 or 0
indicating, respectively, the corresponding item
belongs or not to the resulting knapsack. This
solution cannot be easily obtained, in fact, this is an
N P-hard problem. Different metaheuristics have
been applied to the solution of the 0-1 MKP [10],
some works deserve to be highlighted and their
results are compared to the ones obtained in our
implementstations: the genetic algorithm proposed
by Chu and Beasley [2], the parallel
implementation based on ant-colony optimization,
proposed by Finger et. al [8] and the
neurogenetically algorhythm proposed by Deane
and Agarwal [5]. In previous works [3, 4] we had
already presented sequential and parallel
implementations of genetic algorithms and
augmented neural networks to find approximated
solutions to 0-1 MKP and in this work we propose

210

Mrs. P. Vasanthi, et al, International Journal of Advances in Agricultural Science & Technology,
Vol.8 Issue 8, Aug 2021, pg.210-213

sequential and parallel GRASP approaches to
accomplish this task. The rest of this text is
organized as follows. Section 2 presents the
definition of GRASP metaheuristic. Section 3
describes our proposed solution. In Section 4 we
present the obtained results compared to other
approaches. Section 5 shows our conclusions and
ideas for future works.

Greedy Randomized Adaptive Search
Procedure

Greedy Randomized Adaptive Search Procedure
(GRASP) [9] is a multi-start metaheuristic that
performs a sequence of iterations, each one
consisting of two phases: construction and local
search. The construction phase is responsible for
building an initial feasible solution using a greedy
strategy and a restricted candidate list (RCL); the
local search explores the neighbourhood of this
solution until a local minimum (or maximum) is
found. The result of the whole process is the best
overall solution. GRASP has been successfully
applied to solve several optimization problems and
for further reading on GRASP heuristic we suggest
the annotated GRASP bibliography assembled by
Festa and Rezende [7].

The Proposed Solution

In this section we present our approach to use
GRASP to solve the 0-1 MKP. We implemented a
sequential version and a version using GPGPU
with CUDA library. The sequential impelmentation
was designed following the basic steps proposed by
Rezende and Ribeiro [9]; the RCL is constructed
using the quality-based policy. In order to evaluate
the quality of the items, we use the pseudo utility of
each item which is computed based on its value and
on its demand for each one of the constraints, as
stated in [4, 6]. The RCL will contain the items
with higher pseudo utilities values. The
pseudocodes of our GRASP main procedure and of
Construct Solution() are shown in Algorithms 1
and 2, where the parameter o is used to guide the
assembly of the RCL.

© 2021, IJAAST All Rights Reserved, https://ijaast.org/

ISSN:2348-1358
Impact Factor: 6.901
NAAS Rating: 3.77

Alorithm 1: GRASP MEP matllerations,)

1 Read Jnput;

2 BestSolation

3 for k= 1 mazlterations do

4| Solution = 1;

Solution = Constroct Sohution{Solition, o)
Solution + LocalSearch(Solution, a);

Bistolution = Solution;

5
]
7| il Solubion i betler than BestSolution then
]
]

end
10 eid
11 retiarn BestSolution;

Algorthsi 2: ConstruetSolition(Solution,

1 repeat

7| Caleulate the pseudoutilities of the items;

3 | Construet RCL and randomly choose one item ¢ from RCL;
4 | e can be added o Solubion then

5 Solutian Salution Ufe};

6| end

7 until ¢ can not be added Lo Solubson:;

§ return Solulion;

Local search, implemented wusing the ideas
presented in [11], works iteratively aiming to find a
better solution, it repeats the process of removing
some items from current solution until any
available item can be incorporated to the solution
and then a new complete solution is reconstructed.
An auxiliary n-position Boolean array (named
marked) is used to guide this process, it stores
information that helps to keep track of which was
the first item removed in each iteration. The steps
of local search, based on [11], are listed in
Algorithm 3. Our CUDA implementation aims to
expand the neighbourhood search using different
threads to iteratively construct different initial
solutions in parallel and then execute local search
in their own generated solution, also in parallel.
This approach can be seen as many parallel
executions of the sequential program; the CPU is
used to manage the iterations and to find the best
solution achieved at the end of the whole process.

Implementation and
Results

Comparative

211

Mrs. P. Vasanthi, et al, International Journal of Advances in Agricultural Science & Technology,
Vol.8 Issue 8, Aug 2021, pg.210-213

The implemented programs were executed using
the instances of ORLIB library [1], one of the most
used set of instances in works related to the
problem. The ORLIB library is composed of a set
of 270 test instances considering 5, 10 or 30
constraints and 100, 250 or 500 items. The gap is a
key concept to evaluate the quality of the obtained
results, it is defined as the percentage of the
difference between the values of the obtained
solution and the best-known solution. Both our
programs were executed 30 times for each test
instance and their medium gaps and times were
computed, as well as the standard deviations of the
obtained gaps. Each execution of the sequential
program consisted of 1000 iterations, while the
CUDA version executed 100 iterations. The
number of threads blocks were set to 100, except
for the instances with 500

Algorithm 3 LoealSearch| Solution, o)

1 Initialize array marked:
2 Copy Solution to CurSol;
3 while there 1 any not marked ttem do
Calenlate the peudotilities of the items;
repeat
Fitiel the ¢ € CurSol with the smallest pseudoutility and remove it from CurSol:

5
[
7| undil all the available ems may be added Lo the solulion:
8 | ConstructSolution(Cursel, o);

b

il Curdol 1s betler than Solubon then

10 Solution + CurSel:

11 Update array marked;

12 | end

13 | else

14 CurSol & Solution;

15 First item removed i marked;
16 | end

17 end

18 return Solulion;

items which used 20 threads blocks. The obtained
results with every configuration were less than 1%
inferior to the best-known solution values. Only 14
test instances had more than 1% of medium gap,
but these values did not exceed 1.2%. In order to
demonstrate how promising GRASP metaheuristic
is to solve the 0-1 MKP, we compared the obtained
results with the ones from Chu and Beasley’s
genetic algorithm [2], Deane and Agarwal’s
neurogenetically approach [5] and Finger’s et al.
ant-colony algorithm [8]. Table 1 shows the

© 2021, IJAAST All Rights Reserved, https://ijaast.org/

ISSN:2348-1358
Impact Factor: 6.901
NAAS Rating: 3.77

comparisons of the medium gaps of the test
instances grouped by number of items and Table 2
shows the medium gaps grouped by number of
constraints.

Table 1: Comparison of the average gap
with the test instances grouped by
number of items.

i | GA | Neurogenetical | ACO | SeqGRASP | CudaGRASP

00{1.0744| 10800 | LOBBS| 03017 0.414
L0\ 0574 03780 |08522] 0.2343 0.2607
001008001 0.0860 (05389 0.2074 (.2456

Table 2: Comparison of the average gap
with the test instances grouped by
number of constrains.

m| GA | ACO | SeqGRASP | CudaGRASP
5 |0.2611[02133] 0.08I7 | 0.0514
10{0.4622 [0.6511| 0.0913 | 0.1503
30| 00036 | 16156 | 0.4703 | 0.5360

By the values shown in Table 1 we can see that
GRASP leads to smaller gaps than the other
approaches, except for the instances with 500 items
where the resulting gaps are slightly greater than
the obtained by Chu and Beasley’s genetic
algorithm and by Deane and Agarwal’s
neurogenetically approach. Analysing the values in
Table 2 we see that GRASP outperforms the other
approaches, although we could not compare with
the results from the neurogenetically algorithm
because these values were not available on the
reference work.

Conclusion

In this work we presented sequential and GPGPU-
based algorithms using GRASP metaheuristic to
solve 0-1 MKP and tested them using the test
instances of ORLIB library. The tests results
showed GRASP 1is a promising alternative,
achieving solutions less than 1% inferior to the
best-known solutions. When compared to other
metaheuristics implementations, such as the ones in

212

Mrs. P. Vasanthi, et a/, International Journal of Advances in Agricultural Science & Technology,
Vol.8 Issue 8, Aug 2021, pg.210-213

[2], [5] and [8], GRASP also obtained better quality
results in almost every test configuration. The
GPGPU algorithm achieved slightly better results
than the sequential version, mainly because it
allowed a more effective neighbourhood
exploration. Nevertheless, this improvement in
quality also led to an increase in execution time. As
future works, we will study and implement other
sequential and parallel metaheuristics to solve 0-1
MKP and compare them to GRASP, specially
simulated annealing and variable neighbourhood
search (VNS). We will also evaluate how GRASP
can be applied to other Optimutation problems,
such as the traveling salesman problem (TSP) and
the quadratic assignment problem (QAP).

References

[1] J. E. Beasley. OR-Library: distributing test problems by
electronic mail. Journal of the Operational Research Society,
41(11):1069-1072, 1990.

[2] P. C. Chu and J. E. Beasley. A genetic algorithm for the
multidimensional knapsack problem. Journal of Heuristics,
4(1):63-86, June 1998.

[3] B. A. Dantas and E. N. C’aceres. Implementa, c oes
paralelas para o problema da mochila multidimensional
usando algoritmos gen'eticos. In Anais do XLVI Simp ‘osio
Brasileiro de Pesquisa Operacional, 2014.

[4] B. A. Dantas and E. N. C'aceres. A parallel
implementation to the multidimensional knapsack problem
using augmented neural networks. In Proceedings of the 2014
Latin American Computing Conference (CLEI), pages 570—
578, 2014.

[5] J. Deane and A. Agarwal. Neural, genetic, and
neurogenetic approaches for solving the 0-1 multidimensional
knapsack problem. International Journal of Management &
Information Systems - First Quarter 2013, 17(1):43-54, 2013.

[6] J. Deane and Anurag Agarwal. Neural metaheuristics for
the multidimensional knapsack problem. Technical report,
2012.

[7] P. Festa and M. G. C. Resende. An annotated bibliography
of GRASP — part ii: Applications. International Transactions
in Operational Research, 16(2):131-172, 2009.

[8] H. Fingler, E. N. C’aceres, H. Mongelli, and S. W. Song. A
CUDA based solution to the multidimensional knapsack
problem using the ant colony optimization. Procedia Computer
Science, 29(0):84 — 94, 2014. 2014 International Conference
on Computational Science.

[9] C. C. Ribeiro M. G. C. Resende. Greedy randomized
adaptive search procedures. In Fred Glover and Gary A.

© 2021, IJAAST All Rights Reserved, https://ijaast.org/

ISSN:2348-1358
Impact Factor: 6.901
NAAS Rating: 3.77

Kochenberger, editors, Handbook of Metaheuristics, pages
219-249. Kluwer, 2002.

[10] M. Varnamkhasti. Overview of the algorithms for solving
the multidimensional knapsack problems. Advanced Studies in
Biology, 4(1):37—47, 2012.

[11] D. S. Vianna and M. F. D. Vianna. Local search-based
heuristics for the multiobjective multidimensional knapsack
problem. In Produ c ao, volume 23, pages 478—487. 2013.

213

